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FREQUENCY DISTRIBUTIONS OF GRADIENT

ABSTRACT

Gradient is the most important attribute of surface geometry and its

frequency distribution is considered here in detail to assess how it may be

summarised, for example by fitting various models. Plots on probability paper

are made of gradients Qfrom altitude matrices of 25 to lOOm mesh, for five

square areas and for two drainage basins, ( from meshes of variable triangles

averaging 33 to 244m in linear dimension, for five drainage basins, (,iG) from

relief per 1 x 1 km square for large morphological regions, and 4. from

field measurements over distances of 1.5 to Oim along profiles, the location

of which was subjective, Although some support is provided for Speight's

(1<) suggestion that taking the logarithm of tangent normalises frequency

distributions, in some cases better results are obtained from the square root

of sine, or even from no transformation of slope angle in degrees. The main

transformations have similar effects over a broad range of gradients, and most

existing data sets are insensitive to the difference between them. But the

differences which are found here are probably due to differences in terrain,

more than the use of different measuring techniques or differently-defined

study areas. Skewness, for example, does not vary drastically with grid mesh.

Hence the tetative conclusion is that even if study areas are comparably defined,

and identical techniques are used, there is no single universally applicable

transformation which normalises gradients, Summarisation of gradients over

an area for the purpose of comparison with other areas therefore requires

skewness and kurtosis as well as mean and standard deviation. The simplest

approach is to calculate these four moment-based statistics for gradient

expressed in degrees, but it may be useful to go on to further calculations on

whatever transformed scale is found appropriate.

LAC
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FREQUENCY DISTRIBUTIONS OF GRADIENT

PREVIOUS WORK If an area is to be described by summary statistics of point

values such as gradient, it is important to estabiish the shape of the

statistical frequency distribution of such values Evans (1972), .n proposing

the use of moment-based summary statistics, assumed that values for gradient

would not in general follow the normal frequency distribution model, He

proposed, therefore, that skewness and kurtosis were required to supplement

mean and standard deviation as descriptors of the gradient frequency

distribution. For slope profile data measured in the field, however, Pitty

(1970) considered the problem of outliers 3ufficiently disturbing that equivalent

percentile-based measures should be used instead. Such additional statistics

would not be required if frequency distributions followed some single model,

not necessarily the normal model, In the case of gradient values several

such models have been proposed. Strahler (1950) stated that:

"Within an area of essentially uniform lithology, soils, vegetation, climate

and stage of development, maximum slope angles tend to be normally

distributed with low dispersion about a mean value determined by the

combined factors of drainage density, relief and slope-profile curvature,"

This proposal, based on observations in the steep-sided valleys of the

Verdugo and San Raphael Hills, southern California, is stated sufficiently

precisely that the limitations to its application are clear. It applies only

to the maximum angle in each slope profile, and only to areas of rare

homogeneity Later, Strahler (1956) used the sine of slope angle; this

was endorsed by Tricart (1965, p 166), but Miller and Summerson (1960) and

Mayr (1973) preferred the square root of the sine. Thomas and Tuttle (1967)

used a logarithmic transfurniation of the tangent of gradient, before applying

significance tests Blong (1975) chose the tangent of gradient, but did not

*GRADIENT is defined here as the maximum rate of change of altitude at or around

a point on the land surface, Unless otherwise stated it is expressed in degrees,
rather than as a tangent Gradient is only one component of slope, which also
includes aspect, the direction of maximum rate of change of altitude
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demonstrate what improvement was achieved thereby.

rhe first attempt to compare different transformations of slope frequency

distributions was by Speight (1971). He compared logarithm, square root and

no tranZformations, of tangent, angle and sine for gradient data collected

in different ways by Seret (1963), Young (1961), de Bethune and Mammeyickx

(1960., Strahler (1956), Gregory and Brown (1966j and himself. The clearest

conclusion was that, except for some of Strahler's data, transformation

was required to reduce the general positive skew,. The difference between

logarithmic transforms with slight negative skew (least skewed for log

tangent) and square root transforms with slight positive skew (least skewed

for root sine) was not marked (eg- Speight 1971 Fig,l, for Seret's data),

Speight decided that log tangents had the advantage, but for some areas it

was advisable to fit steep and gentle slopes by different log-tangent

normal models, e g, the Bougainviiie and Buka Islands and the McArthur R.

area- Strahler's data were strongly negatively skewed on the log-tangent

scale, and normal curves could be fitted only by ignoring gentler slopes.

ne difficulty of discriminating one transformation from another is

shown by Figi. Whether the logarithm of angle or of tangent is taken, no

difference can be established below 20'; the relationship between the two

transformations is linear Only above 50* does the plot curve appreciably,

but none of the available data sets has as much as 1% of its gradient in

that range More to the point, Fig 2 relates the two best transformations

(of those considered by Speight), the square root of sine and the logarithm of

tangent The relationship is very close to linear between 1O and 50*.

Given the rarity of steeper slopes, discrimination between the two transformations

ran be achieved only in terms of gentle slopes, preferably below 5O. Clearly

it would be useful to subdivide the 'below 1*' class

Speight demonstrated how the planimetry of facets from morphological

maps by Seret (1963) and Gregory and Brown (1966) exaggerated minor modes;

it is necessary to smooth such data Speight found little evidence of the

/1~*-
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polymodality ('characteristic slcpe angies'} which several authors had seen

in their data. Clearly such characteristics must be judged on the transformed

measurement scale, Nevertheless, Speight's technique of plotting the ratio

of observed to expected values is not adopted here, since it exaggerates

the impoitan:e of small numbers in peripheral classes-

Nieuwenhuis and van den Berg (1971), in a paper notable for its

recognition of autocorrelation in slope profile data, applied a square root

transformation to tangent data and suggested that this resulted in insignificant

deviation from the normal frequency distribution model. Unfortunately, as

they admitted on p.167, their slope profiles were subjectively located

hence, despite the careful thinning out to eliminate significant autocorrelation,

their application of significance tests permits conclusions only about the

particular profiles chosen, and not ibout the study area, They failed to make

the necessary qualifications to their conclusions, e.g on p 172 and in the

abstract They demonstrated on p 170 that slopes above 740m altitude are

strongly over-represented. since these slopes are also gentler, the biased

sampling may affect any of Nieuwenhuis and van den Berg's conclusions,

Nevertheles,, the square root transform (actually, where Q is the angle in

degrees, ViOO tan 9 + .100 tan 9 + 1) does provide a very linear

probability plot

A square root transformation was applied by Christofoletti and Tavares

(1976), but to angles in degrees rather than tangents, i e they used

-+ fW +I1 Aggregating to six classes, this gave a chi square value

of 14.37 compared with 18.47 for a logarithmic transformation, 125,72 for

no transformation of degrees, and 18.55 for the tabulated 99.5% confidence

level for 6 degrees of freedom. Hence they concluded that the square root

transformation gave a normal distribution Stocking (1972) did not find it

necessary to transform gradient (degrees), although he tuok the square root

of a dependent variable (length of gullies) to minimise skewness. Schumm

(1956) did not need to apply any transformation to his badland slopes; with

means of 43 and 44 degrees, they were near-normal There is no consensus
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then, on the tiansformati.,n required to normalise gradient frequency

distributions, or on whether a single transiczmation is widely appiicaole

METHODOLOGY FOR THE ASSESSMENT OF TRANSFORMATIONS Of the papers quoted

above, only Speight (1971) and Chr±itofoletti and [avares (1976) made any

serious attempt to compare different transformations in terms of their

effect on fit to the normai tiequency distribution modei Simply to show

that one tr~nsformation reduces skewness, or produces a frequency

distribution whose divergence from normal (for that sample size) is

statisti.ally insignificant, as have several other authors, is not conclusive

in this context

A chi square test is not of great value here, since it is sensitive

to the number and limits of the classes used to compare observed and expected

frequencies, and the classes usually used provide rather coarse nets, A

Kolmogorov -Smirnov test is rather better since itpermits the use of finer

classes and is based on cumulated frequenciestaking ranking into account

whereas chi square degrades a ratio scale of measurement to a nominal one.

However, the fact remains that an insignificant deviation from normality in

a small sample may be much more marked than a significant deviation from

normaity in a very large sampie Significance testing can be a red herring;

it is more important in this context to take samples large enough to provide

powerful comparisons between transfornations, and to assess the degree and

the character of deviation from normality This viewpoint is strengthened

by (i) the fact that slope profiles have uually been selected subjectively,

or in some way that provides neither a random nor a systematic sample of

the study area, hence preventing the application of statistical inference

from the set of profiles to the area as a whole, and (11) the autocorrelation

of gradients along prctfies or across matrices makes it very difficult to

establish how many degrees of freedom are present; thinning out the data,

e discarding most of it, as do Nieuwenhuls and van den Berg, is hardly,

an ideal solution
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To compare the degree of deviation from normality, skewness is without

doubt the most important single statistic (followed by kurtosis). Values in the

tall of a skewed distribution may greatly affect descriptive statistics and

correlations, whereas those in the two tails of a leptokurtic distribution may

often balance each other It is desirable, then, to find a transformation which

minimises skewness (Evans, Catterall and Rhind 1975) Given low skewness, normal

kurtosis is the next desideratum.

A fuller picture of deviation from normality is provided by a plot on

cumulative probability paper Class limits are plotted on one axis against the

cumulated percent frequency at those limits on the other axis: in the present

paper frequencies are cumulated upward, Classes should be as small as possible,

especially in the tails, Divisions on the paper are drawn so that normal frequency

distributions plot as straight lines Although the two tails of such a plot

are important, we should beware of exaggerating the importance of a few extreme

points, emphasised by the probability paper which 'stretches' both tails. With

a horizontal cumulated frequency axis, skewed distributions plot concave

(positive) or convex (negative) upward- Unskewed kurtic distributions plot

S-shaped, balanced at the mean, with the central part steeper (platykurtic:

broad mode or truncated tails) -r flatter (leptokurtic: peaked mode or extended

tails). More complex deviations from normality are reflected in other curves or

breaks in the slope of the probability plot. It should not be assumed, however,

that a break in slope on this plot marks the correct point for subdivision into

two 'normal' components, for such supposed components must be replotted

individually and may then be affected quite differently by the 'normal probability'

transformation. This graphic technique is both robust and discriminating, and

chief reliance is placed upon it here; the measurement of skewness is a suitable

gross test, but skewness can be produced in different ways.

DATA(i) : ALTITUDE MATRICES. Large data sets are required to discriminate between

different frequency distribution models of the typecdiscussed by Speight (1971).

Tables 1 and 2 give data in i classes, for sets of 3,447 to 11,582 measurements
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of gradient, while Figs 3 to 9 give the corresponding histograms Ea:h is

based on an altitude matrix, and me!,hes vary from 7 62m to lOOm These

gradients are calcuiated not by the finite difierence method used in Report 3,

but by an improved method. rhis is implemented by the main terrain analysis

program, discussed in detail in further reports in this series A local

quadratic trend surface is fitted to each 3 x 3 submatrix, and the gradient

at the centre of the submatrix is -aiculated by substitution into the trend

surface equation Fxequen,:y dlitributions are tabulated for gradient and

for the other derivatives o! the altitude surface; aspect, profile convexity

and plan convexity, as well as for altitude itself Since aspect is

indeterminate when gradient is zero, such points are excluded from these

tabulations

Table 3 gives the moment measures of these gradient frequency distributions.

Skewness is greatest for the two matrices CACHE 1 and CACHE 2) with the

lowest mean values, and it is lowest for the steep NUPUR and FERRO areas

TORRIDON, with a skewness of .1 despite a high mean, is the exception No

cases of negative skewness occur Kurtosis, as usual, increases with skewness

Two of the matrices with Low skewness, CACHE 3 and NUPUR, have negative kurtosis

(they are platykurtic, with truncated tails and/or broad modes relative to

their standard deviations) FERRO, on the other hand, is leptokurtic despite

a near-absence of skew. Hence despite the prevailing positive skewness, the

seven gradient distributions do not obviously belong to the same family of

frequency distributions This is confirmed by plots on probability paper

The Cache area (4 x 12 km, divided into 3 squares) is in Oklahoma, and

extends from a lowland (CACHE ij to an upland (CACHE 3), area with CACHE 2

a mixture of both The data were produced by automatic photogrammetric

profiling on a UNAMACE machine, followed by processing to remove noise (this

involved a certain amount of smoothing) For the untransformed distributions

(Figs 3, 4 and S) skewness decreases with increasing gradient This is confirmed

by the probability plots (Fig 1O) which are very concave-up for CACHE 1, but
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straight above 20 (20%) for CACHE 3: CACHE 2 has an unusually steep plot,

The logtangent transformation (Fig.12) leaves some positive skew for

CACHE 1, but overtransforms CACHE 3 for which the probability plot is

dominantly convex-up, with some platykurtosis. CACHE 2 is more complex,

producing an S-shaped curve with a steep central section from 40 to 90%;

this is interpreted as heterogeneity, with a large gentle area comparable to

CACHE 1, and a small area steeper than CACHE 3, The square root of sine

plots are similar except that the concavity of CACHE 1 and the initial

concavity of the other plots are more marked. Hence the logtangent

transformation is preferred for Cache, although it is far from ideal,

The fine-meshed Gold Creek matrix describes a small drainage basin near

Canberra, New South Wales, Australia. The considerable positive skew of its

gradients requires transformation, and the logtangent transform seems appropriate

despite minor bumps in the probability plot (Fig.lI) : the square root of sine

(Fig.15) leaves a slight positive skew.

The FERRO area of N E. Calabria, Italy is also a drainage basin, but

with slopes much steeper than Gold Creek. The lOOm grid is of altitudes read

from a photogrammetric 1/25,000 map, to the nearest 10m (i.e. one contour

interval). Its gradients have the lowest skew of those from matrices, and are

approximately normally distributed without transformation (Fig.13). The square

root of sine transformation (Fig.15) is too drastic, producing a definite

negative skew (upward convexity on the plot).

The NUPUR area is a glacially dissected plateau in northwest Iceland,

Altitudes were read to the nearest Sm, on a 100m grid, from a 1/25,000

photogrammetric contour map, It is considerably steeper than the other areas,

and its gradients are platykurtic but almost unskewed. Hence the square root

of sine transformation (Fig,15) and the log tangent (Fig.14) exaggerate the A

convexity of the plot around 350 and produce negative skew. The TORRIDON area is

a similar heavily glaciated mountain area but without plateau remnants. Altitudes

were read to the nearest metre on a 10Cm grid, from the new Ordnance Survey

1/10,560 and 1/10,000 photogrammetric maps.
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Fhe untransformed distribution of gradients forms an S-shaped plot, steepest

between 15' and 35' (63% and 94%j (Fig 131 Transformation reduces the initial

concavity but exagger~tes the later convexity, so little is to be gained

In summary, Lhe logtangent transformation seems appropriate for the

gentler areas, but does not normalise distributions fully. Steeper areas,

especially the unglaciated FERRO basin, require no transformation.

DATA(ii) GRADIENTS FOR VARIABLE TRIANGLES IN A MESH OF SURFACE SPECIFIC POINTS

Hormann (1968, 19-1) has digitized a large number of contour maps by

sub)ectively selecting significant surface points such as summits, passes and

pits, with further points along significant lines such as ridges, channels

and breaks in slope- Points are added until it is considered that a reasonable

approximation to the land surface as mapped can be provided by linear

interpolation between the points,whose (X,Y,Zi coordinates are digitised. For

each point, all neighbouring points aie recorded, and the surface is reconstructed

by computer program as a mesh of triangular facets, the triangles being as

equiangular as possible.

This type of digital terrain model is equally comprehensive but more

concise than an altitude matrix, since the redundancy of information is minimised,

It is, however, more subjective, and the varying area of the triangles means

that the, cannot carry equal weight. Hormann weights his frequency distributions

by map area; all frequencies are expressed as percentages of total area. The

merits of Hormann's system are discussed by MarK and Peucker (1975) and by

Mark (1975b), and will be further considered in the Final Report on the present

project

Table 4 lists five areas for which gradient histograms were published in

Hormann (197j, p 54 and p- 7),-tnd one (Schiltach, Schwarzwald) for which a

frequency distribution was given in Hormann (1968, po141) Also given are the

scales of source maps, ranging from 1/5,000 to 1/25,000, the total area,and the

number of triangles used. Dividing area by number of triangles, then taking

the square root, gives a weighted 'mean linear dimension' of the triangles;



this is roughly equivalent to the mesh of an altitude matrix. The Stallwang

basin was digitised at two scales, permitting a comparison of results based on

maps at 1/25,000 and 1/5,000 Data read from Hormann's table and histograms

were corrected for closure errcis of some 1%, so that they totalled exactly

100% for each area (Table 5)

Fig.17 shows that the logtangent overtransforms most distributions,

producing negative skew (upward convexity on the probability plot). Only the

plot for the Stallwang basin in the Bayerische Tertiarhugelland (Bavarian

hill country of Tertiary rocks) is linear, and then only for the 1/25,000-

based digitization : the more detailed work from the 1/5,OO0 map gives a

broader spread of gradients and anegative skew, The Val Tuoi basin of the

Silvretta Alps is near-linear, but is improved by the square root of sine

transformation, with which it gi-es a linear plot from 0 5% to 99.5% cumulated

frequency (Fig 18)

The Bayerische fertiarhgeiland gradients now have a slight concavity

around 6' (30%) for 1/25,000, and around 90 (60%) for 1/5,000, followed by a

broad convexity for the latter, so perhaps the root sine transformation is

the best compromise between the two map scales. Gradients of the Schiltach

basin in the Schwarzwald are now linear except for an aberration around 5e0,

well beyond the 99.5 percentile

On the other hand gradients from part of the lz basin in the

Bayerischer Wald (the Bavarian Forest, near the Czech and Austrian frontiers)

are still negatively skewed, while those from the Kuchel basin of the North

Calcareous Alps in Bavaria (unlike the Silvcetta Alps) and the Mala Kaliao

basin in Cameroun are strongly negatively skewed (over-transformed). These

two data sets are much more nearly normal without transformation (Fig16),

but the Bayerischer Wald is then positively skewed and appears to need a

different transformation, e.g. square root of tangent.

Hence it is difficult to generalise about these data sets from Hormann

the square root of sine is the best single transformation but at least two

sets should not be transformed The differences cannot be related to
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topography, since the two Aipine areas plot quite differently Scale of

source map, .on the other hana, d.es procuLe df fexenee in distribution shape

DATA (iii) . RELIEF-BASED L KM AVERAGE GRADIENT iOR BOHEMIA AND MORAVIA

Kudrnovzka (1972J produced an interesting data set for the whole of the

Czech lanas (Ka4S5kmj Knge in altitude (xeiief, in metres) was calculated

for each I x 1 km square from i/25,O00 maps, and multiplied by J(Ol to give

the tangent of gradient This was tabulated for five regions (Table 6) roughly

equal in area, and (in the original) for many subdivisions. The use of eight

classes maKe the data less detailed than tne other sets used here, but the

wisely chosen class limits 1,2,3,5,7,10 and 15 degrees provide as much

information as possible, and permit use of the data for present purposes.

Like methods (i) and (ii) the reiief method samples the whole surface area

systematically . the averaging involved, however, means that we are dealing

with gradient at a much coarser scale than with even the IOO grid mesh or

150m triangles.

Probability plots show that the central region is consistently gentlest,

and northern and eastern regions have greatest slope dispersion, mixing the
steepest slopes with a Ionsiderable number below lc Logtangent (Fig 19)

and also logdegree5 plots are all slightly convex-up (negatively skewed),

,ery markedly so for the centrai region, Rootsine plots are slightly concave-

up, except for the central region which is just on the convex side of straight

(Fig.20). As in Speight's (1971) study, and despite the difference in scale,

the 'ideal' transform is somewhere between the logarithm of tangent and the

square root of sine : but in the Czech case the latter has the edge,

DATA (iv) SLOPE PROFILES, FIELD-SURVEYED

Many British geomorphologists are distrustful of data obtained from

medium-scale maps (e~g. Pitty, 1969) and might maintain that gradients of slopes

profiled in the field are of much greater interest than any of the above. The

techniques and problems involved were discussed by Pitty (1969) and by oung

(1972). Most recent work has been based on measurement over fixed increments

ii
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of slope length; results differ according to the slope length selected

(Gerrard and Robinson, 1971)- But the main problem with the measurement of

profiles from hillcrest to drainage line is the apparent impossibility of

selecting a random or systematic sample of profiles (Young, 1972, p4145:

Reynolds, 1975), compounded by difficulties of access or of anthropogenic

modification fo some of the profiles selected, which usually cause their

disqualification, Hence it is usually necessary to regard a set of slope

profiles as a subjective 'sample' 0: dn area, or as a sample of certain

types of slope (e g. straight in plan) only,

The first such data are taken from the complete distributions of

Nieuwenhuis and van den Berg (1971), divided for lithology (Table 7).

Gradient was measured for 6,034 unit lengths of lOm on profiles subjectively

located within part of the Morvan, with some bias toward higher altitudes

(with gentler slopes). Both are overtransformed by logtangent (Fig.21),

but quite normal as square root of sine (Fig.22).

Second, Juvigne (1973) measured some 40km of profiles in the Famenne region

of Belgium; percentage frequencies of gradientover 200m unit lengths, read

from his Fig,6b are given in fable 8. This distribution has an awkward

tail of high gradients and requires severe transformation : even logtangent

has a positive skew (Fig.21). NJ. Cox (unpublished) has provided data for

4,571 unit lengths of l.5m on eleven profiles in the North Yorkshire Moors,

England These form a subjective sample of straight slopes undisturbed

by for example roads or quarries, above headstreams in 10 x 1Okm grid square

SE59 Gradient was measured to the nearest 1° with a slope pantometer°

Table 9 gives frequencies and cumulative percentages after 51 zero and

113 negative gradients were discarded. The square root of sine transformation

(Fig 22) does not fully remove the positive skew, but the lcgtargent (Fig.23)

provides an almost normal distribution.

Another selective data set comes from Tinkler (1966), who surveyed 46

closely-spaced profiles on the Eglwyseg Carboniferous Limestone scarp slope,

between Wrexham and Llalgollen, NE. Wales (Table 10). Since the cliff above,
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j and gentler slopes in the valley, were excluded by definition, the gradients

have unusually low variability. Being in the range 16-44 degrees, they are

little affected either by logtangent (Fig.23) or(Fig.24) rootsin transformation,

but both probability plots are convex-up Even the untransformed plot (Fig.16)

is convex-up, showing negative skewness. Hence these data should not undergo

any of the usual transformations. A very similar plot (on Fig.13) is provided

by slopes from a quite different environment, the dissected Neogene Basin fill

of central Afghanistan (Table 11: Evans, 1964). These gradients are almost

normally distributed without transformation. The small negative skew in

both cases probably relates to the existence of a maximum gradient on which a

waste mantle can be maintained.

Gerrard and Robinson (1971) made an interesting comparison between

measured lengths of 2.5, 5 and Oim on the same 30 randomly-located profiles

in the New Forest, Hampshire (Table 12). All three distributions plot strongly

convex-up on a logtangent transformation (Fig.23), but those for 2.5m measured

lengths are nearly straight on the rootsine probability plot (Fig.24). Those

for Sm and especially lOm are progressively more convex-up and require a

weaker transformation to remove their small positive skew on the degrees scale.

Pitty (1970) calculated both moment - and percentile-based measures of

skewness for individual slope profiles. His dissatisfaction (p.5) with moment

measures due to the considerable effect of outliers can be related in part

to ti) the small number of measurements per profile - it is desirable to combine

many profiles before calculating moment measures; (ii) the short unit length

of l.52m; (iii) a technique of profiling along straight lines; whereby local

reversals produce 'negative gradients'; and (iv) the exclusion of large parts

of the land surface. He found a broad range of both positive and negative

skewness, the latter being much more likely for profiles with median gradients

in excess of 20'.

Although there is some regional consistency, the diversity of types of

skewness suggests the need for various types of transformation, as Pitty

concluded on p.12.

| .. - .j



Fiel-mesurd sopeproilegradient data, then, are as diverse as the

other types. Some require rootsine transformation, some logtangent, and some

no transformation at all. Frequency distributions vary with scale (length of

unit measurements), with type of region and probably with technique.

Effect of horizontal matrix resolution on shape of frequency distributions

Returning to gradient calculated from altitude matrices, it is possible

to recalculate these for 'thinned' matrices, as if the matrix had coarser

resolution, by using only every nth point. This was done for Report 3, where

the effect on mean and standard deviation of gradient was considered at length.

Table 13 gives full moment-based descriptive statistics for some 'thinned,

versions of Torridon and Cache 2. It shows that skewness and kurtosis are

less sensitive to mesh than are mean and standard deviation. For extreme

thinning, few points are involved and results are erratic, but there is no

consistent tendency for skewness and kurtosis to increase or decrease with

mesh.

Table 14 shows skewness as a function of resolution for four altitude

matrices. These results were produced by a different program, which considers

all possible thinned matrices instead of just one centrally-located thinned

matrix :this gives a much larger set of measurements for larger values of n,

since points are lost only around the edge. There is a tendency for skewness

to decline very slowly as resolution is reduced (n is increased), but this is

sometimes reversed.

It seems that the essential characteristics of the shape of a gradient

frequency distribution are not greatly changed by changing resolution

differences between areas remain, with Cache 3 the least skewed of these four

and Cache 1 and 2 the most skewed. Inspection of corresponding histograms

confirms this constancy of character; for example, the biaodality and positive

skew of Cache 2 persists even with extreme thinning.

Conclusions

In this analysis, a number of large data sets generated in four different
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ways have been plotted in comparable fashion, Where possible, the effect of

scale (resolution) has been assessed. Regardless of data type, it is found

that no one transformation permits normality to be achieved Positive skew

is most widespread, but some data sets are (slightly) negatively skewed, For

those which are near-normal without transformation, it seems undesirable

to split them up into logtangent-normal components, as did Speight (1971).

On the other hand, some data sets such as Cache 2 are obviously compound and

might best be subdivided.

The logarithm of tangent and the square root of sine are the most widely

useful transformations, but it is necessary to maintain an open mind and try

different transformations for some data sets. As yet it is difficult to

speculate on relations between the frequency distribution of gradients in

a particular area, and the processes and modes of slope development operating.
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*, Freqpcn d tti !: ..r: g:,,dient fromr altitude mrrtr ces
ul = exclu,,ie. upptr Unmit of cias) in degrees, f = frequency,
c = cumuiated percent.trequency

CACHE CACiHL 2 CACHE 3 GOLD CR

ul f c f c f c f c

0 5 245 2 87 132 1 47 48 51 4 .12
1 5 4719 58,13 3662 42.24 1071 1lo80 117 3.51
2 5 2427 86-55 2113 65,76 1287 25.38 369 14.22
3,5 772 95.59 703 73 S8 846 34.30 629 32.46
4.5 229 98.27 372 77 72 692 41,60 624 50.57
5,5 90 99.32 229 80.27 789 49.92 571 67.13
6,5 26 99.63 172 82,19 780 58.15 389 78,42
7,5 15 99,80 170 84 08 703 65.56 264 86.07
8 5 6 99.87 176 86.04 782 73,81 169 90.98
9 5 4 99,92 205 88,32 720 81.40 108 94o11

10 5 0 99 92 238 90.9' 624 87 99 61 95 88

ii15 2 99.94 205 93-25 466 92,90 41 97.07
12 5 1 99.95 190 95,31 319 96,27 35 98.08
13.5 1 99.96 122 96.73 160 97,95 26 98,84
14.5 2 99.99 89 97,72 82 98.82 5 98,98
15 5 1 100 00 87 98,69 49 99.34 13 99.36
16 5 47 99,2i 30 99.65 10 99.65
17.5 27 99.51 14 99.80 3 99,74
i8 5 18 99.71 7 99,87 6 99.91
19 5 11 99,83 7 99 95 2 99.97
20 5 7 99 91 0 99.95 1 100.00
21.5 2 99.94 3 99,98

22-5 3 9997 2 10000
23.5 3 100.0

24,5

25 5



Table 2 Frequency distributions of gradient from altitude matrices.

ul - (exclusive) upper limit of class in degrees, f = frequency,

c cumulated percent. frequency.

FERRO NUPUR TORRIDON

c f c f c ul

0 .00 82 1.35 0 .00 0.5
124 1.07 59 2.32 218 2.33 1.5
139 2.27 119 4.27 370 6.27 2.5
261 4.52 136 6.51 369 10.21 3.5
173 6.02 133 8.69 495 15.49 4.5
209 7.82 171 11.51 493 20.75 5.5
287 10.30 151 13.99 454 25.60 6.5
289 12.80 157 16.57 523 31.18 7.5
425 16.47 135 18.79 sI 36.63 8.S
584 21.51 142 21.12 488 41.84 9.5
687 27.44 146 23.52 497 47.14 10.5

1105 36.98 139 25.81 402 51.43 ii.5
929 45.00 159 28.42 343 55.09 12.S

1100 54.50 166 31.15 315 58.45 13.5
870 62.01 167 33.89 274 61.37 14.5
928 70.02 179 36.83 268 64.23 15.5
716 76.20 183 39.S4 216 66.54 16.5

663 81.93 145 42.23 220 68.89 17.5
559 86.76 132 44.40 198 71.00 18.5
404 90.24 136 46.63 172 72.83 19.5
325 93.05 142 48.96 152 74.46 20.5
254 95.24 115 50.85 151 76.07 21.5
194 96.92 146 53.25 138 77.54 -2.5
114 97.90 138 53.52 133 78.96 23.5
88 98.66 157 58.10 136 80.4. 24.5
so 99.09 145 60.49 120 81.69 25.5
35 99.40 151 62.97 108 82.84 26.5
29 99.65 132 65.14 103 83.94 27.5
10 99.73 136 67.37 102 85.03 28.5
15 99.86 1,16 69.77 114 86.25 29.5
7 99.92 127 71.86 96 87.27 30.5
0 99.92 132 74.03 93 88.26 31.5
3 99.95 136 76.27 110 29.44 32.5
2 99.97 139 78.55 99 90.49 33.5
2 99.98 138 80.82 95 91.51 34.5
2 100.00 145 83.20 96 92.53 35.5

133 85.39 108 93.68 36.5
120 87.36 99 94.74 37.5
123 89.38 92 95.72 38.5
104 91.09 64 96.40 39.5
109 92.88 84 97.30 40.5
73 94.08 64 97.98 41.5
80 95.40 55 98.57 42.5
63 96.43 31 98.90 43.S
63 97.47 29 99.21 44.5
44 98.19 17 99.39 45.5
23 98.57 7 99.47 46.5
22 98.93 8 99.55 47.5

I .16 99.19 16 99.72 48.5
11 99.38 3 99.75 49.5

11 99.56 4 99.80 50.5
6 99.65 9 99.89 51.5
7 99.77 2 99.91 52.5
5 99.85 5 99.97 53.5
3 99.90 2 99.99 54.5
2 99.93 1 100.00 55.5
1 99.95 56.5
1 99.97 57.5
1 99.98 58.5
1 100.00 59.5

60.S



Table 3. Moment measures for gradients from altitude matrices Gradients are
calculated by local quadratic method and exclude zero values: figures in brackets arebased on finite difference method and include zero gradients.

No.of points Mean St, Dev. Skewness Kurtoas Grid mesh(m)

CACHE 1 8,540 1o563 1.008 2.921 19-46 25

CACHE 2 8,983(9,604) 3.450 3.877(3.86) 1.829(1.93) 2.58(.234) 25
(3.16)

CACHE 3 9,481 5.844 3.695 .458 - .52 25

GOLD CR. 3,447 4 950 2.649 1.447 3.36 7.62

FERRO 11,582 13.087 5°086 .144 .75 100

NUPUR 6,084 21.627 12.586 .176 -.97 100

TORR 9,372(9,604) 14.761 11.090(12.49) 1.009(1.125) .149(-2.12) 100
(14.93)

Table 4, Characteristics of data sets derived from Hormann (1968, 1971).

Code Drainage basin Map scale Area(km ) No. of triangles Mean linear
dimension

Region

233 945/7/11 Stallwang 1/5,000 3.302 1963 41m

Landshut, Isar Basin, Bayerische TertiarhUgelland

233 945/5/11 " 1/25,000 3,253 142 11m

2.3 8133/6/10 Kuchel 1/10,000 10.313 2531 64m

Elmau (part of Linder-Ammer) basin, Northern Calcareous Alps, Bavaria.

239 588/7/11 Ilz(part of) 1/5,000 1o584 1426 33m

Bayerischer Wald, eastern part.

242 27/5/3 Val Tuoi 1/25,000 26.452 1050 159m

Silvretta Group, Unter-Engadin, Swiss Alps

13521/5/4 Schiltach, above Lauterbach

1/25,000 55.395 929 244m
Kinzig basin, northern Schwarzwald.

777 3401/5/9 Mayo Kaliao 1/25,000 60.277 2498 155m

(enlarged from 1/50,000)

Part of Mayo Debi basin, Tsanaga-Logone basin, N.E. Cameroun (1404 E, 10040 N)

I

LA.



(a

Table 5 Frequency distributions of gradient from Hormann (1968,1971)

ul = upper limit of class (in degrees)

p = percent frequency, c = cumulated percent frequency

Kuchel,N Val Tuoi Ilz,Bayer Schiltach, Mayo Kaliao Stallwang, Bayer.
Calc.Alps Silvretta Wald Schwarzwald Cameroun Tertiarhigelland

1/5,000 1/25o000
u . p c p c p c u.1. p c p c p c p c

2 .1 .1 .0 .0 3,0 3.0 1 4.5 4.5 .3 .3 .0 '0
4 .2 3 .4 4 7.2 10.2 2 2.23 2.23 16.2 20.7 2.2 2.5 .0 o0
6 .3 .6 .7 1i1 6.6 16.8 3 4.72 6.95 17.9 38.6 3.4 5.9 .7 .7
8 1 .7 1.2 2.3 9.5 26.3 4 4.89 11.84 8.8 47.4 6.1 12.0 2.6 3.3

10 .2 .9 1.5 3,8 9.3 35,6 5 3.60 15.44 5.5 52.9 8.7 20.7 10.4 13.7
12 -3 1.2 3.0 6,8 9.0 44.6 6 4.03 19.47 3.5 56.4 11.4 32.1 17.0 30.7
14 .1 1.3 3.8 10.6 9.7 54.3 7 6.32 25.79 3.0 59.4 11.3 43.4 16.7 47.4
16 5 1.8 4.6 15.2 9,0 63.3 8 5.51 31.30 2.3 61.7 8.4 51.8 9.4 56.8
18 8 2.6 4.3 19.5 7,7 71.0 9 8,34 39.64 2.2 63.9 9.5 61.3 9.8 66,6
20 9 3,5 5.8 25.3 8.0 79.0 10 6.22 45.86 1.5 65.4 6.0 67.3 7.3 73.9
22 1.5 5,0 6.5 31.8 6.1 85.1 11 6.62 52.48 1.5 66.9 3.6 70.9 8.0 81.9
24 2.1 7.1 9.3 41.1 5.8 90.9 12 6.89 59.37 2.1 69.0 4.5 75.4 3.5 85.4
26 1.9 9.0 7.4 48.5 4.2 95.1 13 5.47 64.84 1.7 70.7 3.2 78.6 3.0 88.4
28 3.4 12.4 6.6 55.1 2.5 97.6 14 6.00 70.84 2.0 72.7 2.8 81,4 3.7 92,1
30 5 4 17.8 6.2 61.3 1.3 98.9 15 4.48 75.32 2.7 75.4 3.2 84.6 3.3 95.4
32 5.6 23.4 5.8 67.1 .5 99.4 16 4,78 80.10 1.6 77.0 2.0 86.6 .9 96.3
34 9 , 33.0 5.6 72.7 .3 99.7 17 2.98 83.08 1.7 78.7 1.9 88.5 1.1 97.4
36 11.1 44.1 3.8 76.5 .1 99.8 18 3.41 86.49 1.6 80.3 2.0 90,5 1,7 99.1
38 12.3 56.4 2.3 78.8 105 99o85 19 2.00 88.49 2.4 82.7 1.7 92.2 .0 99,1
40 10.5 66,9 3.2 82.0 .05 99,9 20 2.69 91.18 1.7 84,4 1.3 93.5 .3 99,4
42 7,6 74.5 4.6 86.6 .05 99o95 21 2.19 93.37 1.6 86.0 1.8 95.3 .0 99.4
44 6.0 80.5 2.9 89.5 .05 100.0 22 .96 94.33 1.7 87.7 1.2 96.5 .25 99.65
46 4.3 84.8 2.3 91.8 23 .83 95.16 1.8 89.5 .9 97.4 .25 99.9
48 4,2 89,0 1.3 93.1 24 .85 96.01 1.6 91.1 .6 98.0 .0 99.9
50 2.8 91.8 1.8 94.9 25 .51 96.52 2.1 93.2 .5 98.5 .0 99.9
52 1,9 93.7 .9 95.8 26 .24 96.76 1.0 94.2 .4 98,9 .1 100.0
54 2,2 95.9 15 97.3 27 86 97.62 1.3 95.5 .6 99.5
56 1 2 97.1 .4 97,7 28 44 98 06 1,2 96.7 .3 99.8
58 1 1 98.2 .5 98,2 29 .50 98.56 o9 97,6
60 6 98 8 ,1 98,3 30 .33 98,89 .8 98.4 .1 99.9
62 ,7 99.5 4 98.7 31 .12 99.01 .4 98.8
64 3 99.8 3 99.0 32 .00 99.01 .4 99.2
66 2 100 0 .3 99,3 34 .36 99.37 .6 99.,8 .1 100.0
68 .3 99.6 36 .08 99.45 ,2 100.0
"0 .2 99.8 38 .19 99.64

.2 100.0 44 .02 99.66

46 .11 99.77
48 .03 99.80
50 .02 99.82

54 .15 99.95
56 .03 99.98
58 .01 99.99
'66 .01 10,00



Table 6. Frequency distributions of average gradient per lxl km square in the
Czech Lands (Bohemia and Moravia), from Kudrnovska (1972). Note that tangent
(average gradient) was calculated by multiplying range in altitude by '001:
this involves assumptions about the separation of the highest and lowest points
in each square, and the appropriate quotient might vary between e.g. .0008 and
0012 in different types of topography.

ul - upper class limit (degrees),

p = percentage frequency, c = cumulated percent frequency. Note the varying
class width.

REGION 2 CENTRAL SOUTHERN WESTERN NORTHERN EASTERN
AREA(km ) 11,209 11,344 10,872 7,810 11,240

ul P C f C c

1 13.81 13.81 8.23 8.23 1.53 1,53 4.35 4.35 10.65 10.65

2 18.16 31.97 17.46 25.69 10.46 11.99 11.73 16,08 17.75 28.40

3 18.84 50.81 19.20 44.89 17.16 29.15 14.19 30.27 16.71 45.11

5 27.92 78.73 29.13 74.02 32.37 61.52 25.72 55.99 25.04 70.15

7 13.55 92.28 13,33 87.35 18.21 79.73 16,16 72.15 13,14 83.29

10 6.64 98.92 9.05 96.40 13.12 92 85 15.12 87.27 9.88 93.17

15 1.07 99.99 3,34 99.74 6,10 98.95 10 31 97.58 5.04 98.21

(>15) .01 100.00 0.26 100.00 1 05 100 00 2 42 100.00 1.79 100.00

LAi



rable '. Frequency distributions of gradient over 1Om unit lengths on subjectively

located profiles in Morvan, Central France, read off Figs. 5 & 6 in Nieuwenhuis

and van den Berg (1971). Tangent 9 vas originally measured to the nearest 1%, then

grouped into tangent classes of 3% below.21 ind 6% above.

ul = upper limit of class, p percentage frequency, c = cumulated percent frequency

ul ul ul ul 2925 lengths on 3109 lengths on
tuff [ microgrpnitetan 0 degrees sIne logtan p c p

025 1.43 .158 -1.602 9.0 9.0 16.3 16.3

-055 3.15 234 -1.260 13.5 22.5 16.8 33.1

085 4.86 ,291 -1.071 12.4 34.9 12.0 45.1

o115 6.56 .338 - .939 9.9 44.8 10.7 55.8

,145 8.25 .379 - .839 10.9 55.7 8.9 64.7

.175 9.93 .415 - .757 8.9 64.6 6.2 70.9

1205 11.59 .448 - .688 8.9 73.5 5.6 76.5

.265 14.84 .506 - .577 11.9 85.4 9.1 85.6

,325 18.00 556 - .488 7.5 92.9 6.6 92.2

.385 21.06 .599 - .415 3.8 96.7 3.8 96.0

.445 23.99 .638 - .352 1.2 97.9 1.8 97.8

505 26.79 .671 - .297 1.0 98.9 0,8 98,6

.625 32,01 .728 - .204 0.8 99,7 1.2 99.8

(>.625) 0.3 100.0 .2 100.0



Table 8. Frequency distributions of gradient over 200m unit lengths in Famenne,

southeast Belgium, read off Fig.6b in Juvigne (1973). ul = upper limit of class

(in degrees), p = percent frequency, c = cumulated percent frequency
ul p c ul p c

0.5 3.3 3.3 15.5 o1 97-4

110 9.0 12.3 16.0 .1 97.5

1.5 5,4 17.7 16.5 .1 97.6

2.0 9.6 27.3 17.0 0 97.6

2.5 7.1 34.4 17.7 .1 97.7

3.0 10.7 45.1 20.5 .1 97.8

3.5 7.5 52.6 21.0 .1 97.9

4,0 8.3 60.9 21.5 .1 98.0

4.5 4.2 65.1 23.0 .1 98.1

5.0 6.2 71.3 23.5 0 98.1

5.5 2.8 74.1 24.0 .1 98.2

6,0 5.2 79.3 24.5 .1 98.3

6.5 2.9 82.2 25.0 0 98.3

7.0 3,0 85.2 25.5 .3 98.6

7.5 3.1 883 26.0 .1 98.7

8.0 1.6 89,9 26.5 .1 98.8

8.5 .5 90.4 27.0 0 98.8

9.0 1,9 92,3 27.5 .1 98.9

9.5 1,2 93,5 28.0 0 98.9

10.0 .7 94.2 28.5 .1 99.0

10.5 -7 94.9 29.0 0 99.0

11.0 .4 95,3 29,5 .1 99-1

115 .7 96,0 31.5 .1 99.2

12.0 .3 96.3 32.0 0 99.2

12.5 .4 96,7 32.5 .1 99.3

13.0 .3 97.0 33,0 0 99.3

13.5 .1 97.1 33.5 .2 99.5

14,0 .1 97.2 34.0 0 99.5

14,5 o1 97.3 34.5 .1 99.6

15.0 0 97.3 >37 .4 100.0



Table 9. Frequency distribution of gradient over 1.5m unit lengths on profiles

of 11 straight slopes undisturbed by e.g. roads, above headstreams in 10 x 10km

grid square SE59, North Yorkshire Moors. Unpublished field measurements to the

nearest 0.5' with a slope pantometer, kindly provided by N.J. Cox.

ul upper limit of class, f = number of unit lengths, c = cumulated percent.

frequency. Ungrouped below 10', aggregated into 20 classes from 100 upward.

ul f c ul c

.75 37 .84 11.75 460 69.75

1.25 64 2.29 13.75 324 77.10

1.75 46 3.34 15.75 231 82.35

2,25 86 5.29 17,75 159 85.95

2,75 94 7.42 19.75 129 88.88

3.25 133 10.44 21.75 88 90.88

3,75 127 13.32 23.75 80 92.69

4.25 151 16.75 25.75 53 93.90

4.75 174 20.69 27.75 47 94.96

S.25 236 26.05 29.75 40 95.87

5.75 149 29.43 31.75 52 97.05

6.25 220 34,42 33.75 28 97.69

6.75 171 38.30 35.75 19 98.12

7.25 209 43.05 37.75 14 98.43

7.75 173 46.97 39.75 17 98.82

8,25 166 50,74 41 75 10 99,05

8.75 147 54.07 43.75 8 99.23

9.25 133 57.09 45.75 11 99,48

9.75 98 59.31 47.75 3 99.55

49.75 0 99.55

51.75 15 99.89

65.75 4 99.98

90.00 1 100.00



Table 10. Frequency distribution of gradients measured by Abney level to the

nearest degree along 46 profiles on the Eglwyseg scarp, Clwyd, N.E. Wales, from

Fig.4 in Tinkler (1966).

ul = upper limit of class, in degrees. f = number of slope facets (of varying

length : average 7.62m)

c cumulated percentage frequency

ul f c ul f C

16,5 1 .25 31.5 24 35.61

17.5 2 .76 32,5 32 43.69

18.5 1 1.01 33.5 33 52.02

19.5 1 1.26 34.5 47 63.89

20.5 0 1.26 35.5 60 79.04

21.5 8 3.28 36.5 26 85.61

22.5 2 3.79 37.5 14 89.14

23.5 6 5.30 38.5 14 92,68

24.5 6 6.82 39.5 8 94.70

25.5 13 10.10 40.5 13 97.98

26.5 15 13.89 41.5 7 99.75

27.5 10 16,41 42.5 0 99.75

28.5 9 18.69 43.5 0 99.75

29.5 20 23.74 44.5 1 100.00

30.5 23 29.55



Table 11. Frequency distribution of maximum hillside gradient on Neogene basin

fill between Bamian and the Koh-i-Baba it Central Afghanistan. Measured by Evans

(1964, Fig.S.02) to the nearest degree, by Abney level, at subjectively located

points.

ul f c ul f c

16.5 1 .37 31.5 20 44.69

17.5 0 .37 32.5 11 48.72

18.5 1 .73 33.5 23 57.14

19.5 2 1.47 34.5 35 69.96

20.5 1 1.83 35.5 20 77.29

21.5 4 3.30 36.5 15 82.78

22.S 0 3.30 37.5 19 89.74

23.5 4 4.76 38.5 8 92.67

24.5 11 8.79 39.5 4 94.14

25.5 12 13.19 40.5 7 96.70

26.5 15 18.68 41.5 3 97.80

27.5 10 22.34 42.3 1 98.17

28.5 8 25.27 43.5 3 99.27

29.5 17 31.50 44.5 2 100.00

30.5 16 37.36



Table 12, Frequency distributions of gradient for 30 randomly selected slopes in
the New Forest, Hampshire, England, read from Fig.1 of Gerrard and Robinson (1971).
ihe same slopes were measured three times, with unit lengths of 2.5m, 5m and lOm.
The mean varies only from 9.0 to 9.2 degrees, but the maximum varies from 22 to 30
degrees.

ul class upper limit , f = number of unit lengths, c = cumulative percentage of
unit lengths

ul f c f c f c

0.5 16 2.50 10 3.12 5 3.03

1.5 23 6.10 10 6.23 4 SAS

2.5 30 10.80 14 10.59 3 7.27

3.5 33 15.96 15 15.26 11 13.94

4.5 32 20.97 20 21.50 9 19.39

5.5 47 28.33 17 26.79 16 29.09

6.5 48 35.84 31 36.45 14 37.58

7.5 46 43.04 25 44.24 10 43.64

8.5 47 50.39 27 52.65 12 50.91

9.5 38 56.34 is 57.32 7 55.15

10.5 39 62,44 23 64.49 10 61.21

11.5 31 67.29 11 67.91 11 67.88

12.5 34 72.61 16 72.90 12 75.15

13.5 37 78.40 9 75.70 6 78.79

14.5 15 80.75 13 79.75 5 81.82

15.5 25 84.66 19 85.67 9 87.27

16.5 21 87.95 13 89.72 9 92.73

17.5 10 91.08 9 92.52 6 96.36

18.5 19 94.05 7 94,70 2 97.58

19.5 9 95.46 5 96.26 1 98.18

20.5 4 96.09 4 97.51 1 98,79

21.5 12 97,97 2 98.13 1 99.39

22.5 4 98.59 2 98.75 1 100.00

23.5 4 99.22 3 99.69

24.5 1 99.37 0 99.69
25.5 2 99.69 0 99.69
26.5 0 99.69 0 99.69

27.5 1 99.4 1 100.00

28.5 0 99.84

29.5 0 99.84

30.5 1 100.00
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Table 13. Effect of grid mesh on moments of gradient frequency distributions. Zero

gradients are included Note that for n = 15 and more, the number of gradients

measured is too small for reliable estimation of moments. *The multiple results

for a single thinning represent differently positioned thinned matrices : this gives

a rough idea of the stability of these results.

ARITHMETIC (degrees) LOGARITHMIC
THINNING GRID NOOF MAXIMUM MEAN ST.DEV. SKEW KURT. MEAN STDEV, SKEW. KURT.
n MESH,m GRADIENTS.

TORRIDON

1 100 9604 73,93 14.93 12.49 1.125 -2.12 1.04 .422 -.788 -2.62

2 200 2304 51.40 14,15 10,66 .908 -3.08 1.06 .351 -.567 -2.84

3 300 930 40.00 12.88 9.10 .812 -3.27 1.04 .322 -,486 -3.10

5 500 324 31,40 10.78 6,68 .682 -3 28 993 ,275 -.460 -3.33

10 1000 64 12.64 5.96 2.77 .111 -3.85 .803 ,198 -.688 -3.15

15 1500 16 6.73 3.79 1,78 -9.850 -3.96 .649 ,177 -500 -3.74

CACHE 2

1 25 9604 23,94 3-16 3:86 1.93 .23 .481 .330 .507 -3.25

2 50 2304 C 19,20 2.84 3.87 1.81 - 65 .425 .349 .728 -3 41

19-20 3.11 3.74 1.85 -.49 .488 .304 .920 -3.11

19.20 3.01 3.72 1,91 ,24 .474 .307 .896 -3.05

3 75 930 [17,03 2.94 3.55 1.78 -.90 .473 .299 997 -3.15

17 03 2.94 3.57 1.84 -.67 475 295 1 05 -3 03

5 125 324 12.83 2.62 3.07 1 71 -1 19 .448 .285 1.02 -3.21

10 250 64 8.44 2.03 2.21 1.56 -1.66 .396 257 .93 -3 41

is 325 16 6 64 1.68 1 95 1.79 -.86 .352 244 1.26 -2.44

16 350 16 5-76 1.49 1.56 1.93 15 .338 .214 1 25 -2.15

20 500 9 5.90 1.64 1.78 2.03 1.38 .356 ,235 1.18 -2.06



Table 14. Skewness of gradient as the matrix is thinned by taking every nth pointin each direction. Zero gradients are included. The initial (nzl) grid mesh is
25m for Cache and 1OOm for Torridon,

n TORRIDON CACHE 1 CACHE 2 CACHE 3

I 1.00 2.03 1.86 .47

2 194 1.54 1.85 .38

3 .86 1.40 1.82 .35

4 .76 1.28 1.79 .34

5 .67 1.21 1.76 .35

6 o61 1.17 1.72 .37

7 .57 1.11 1.66 .40

8 51 1.05 160 .39

9 .56 100 1.55 .39

10 .63 .92 1.51 .34

11 .62 .86 1.46 26

12 .75 .84 1.47 .13

13 .83 .83 1.43 I1l

14 .69 .87 1,43 .03

i5 .75 .88 1.40 .04

16 1,03 .94 1.46 .04

17 .65 .90 1.47 .02

18 .69 .78 1,45 49

19 .79 .77 1150 .27

20 55 .90 1.48 -. 16

21 .46 .81 1.20 -.09

22 .51 .77 1.20 .13

23 .55 .63 1,17 .24

24 .58 .54 1.21 .27

25 .61 .5S 1.30 -.19



Fig. 1. A plot of logarithm of
deg-rees against logarithm
of ta'ngent.
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